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We study memoryless, discrete time, matrix channels with additive white Gaussian
noise and input power constraints of the form Yi = ∑

j Hi j X j + Zi , where Yi , X j and
Zi are complex, i = 1 . . . m, j = 1 . . . n, and H is a complex m × n matrix with some
degree of randomness in its entries. The additive Gaussian noise vector is assumed to
have uncorrelated entries. Let H be a full matrix (non-sparse) with pairwise correlations
between matrix entries of the form E[Hik H∗

jl ] = 1
n Ci j Dkl , where C , D are positive

definite Hermitian matrices. Simplicities arise in the limit of large matrix sizes (the
so called large-n limit) which allow us to obtain several exact expressions relating to
the channel capacity. We study the probability distribution of the quantity f (H ) =
log det(1 + P H†SH ). S is non-negative definite and hermitian, with T r S = n and P
being the signal power per input channel. Note that the expectation E[ f (H )], maximised
over S, gives the capacity of the above channel with an input power constraint in the
case H is known at the receiver but not at the transmitter. For arbitrary C , D exact
expressions are obtained for the expectation and variance of f (H ) in the large matrix
size limit. For C = D = I , where I is the identity matrix, expressions are in addition
obtained for the full moment generating function for arbitrary (finite) matrix size in the
large signal to noise limit. Finally, we obtain the channel capacity where the channel
matrix is partly known and partly unknown and of the form α I + βH , α, β being
known constants and entries of H i.i.d. Gaussian with variance 1/n. Channels of the
form described above are of interest for wireless transmission with multiple antennae
and receivers.
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1. INTRODUCTION

Shannon capacity, providing a theoretical upper bound on the amount of infor-
mation that could be transmitted over a channel, is a fundamental quantity in
communication theory.(1) Today, the discussion of Shannon capacity of commu-
nication channels with additive noise is a substantial part of standard textbook
treatment of signal processing and information theory. Channels with multiplica-
tive noise are in general difficult to treat and not many analytical results are known
for the channel capacity and optimal input distributions. We borrow techniques
from random matrix theory(3) and associated saddle point integration methods in
the large matrix size limit to obtain several analytical results for the memoryless
discrete-time matrix channel with additive Gaussian noise.

Apart from the intrinsic interest in multiplicative noise, these results are rele-
vant to the study of wireless channels with multiple antennae and/or receivers.(4,5,6)

It has been shown that for rich scattering environments, the Shannon capacity, goes
up significantly as the number of transmitter antennas and the number of receiver
antennas increase. The capacity roughly scales linearly with the smaller of the
two numbers. In contrast, if the transmitter cluster and the receiver cluster are far
apart with very few scattering objects around, the capacity gain is only logarithmic
in the number of antennas. Communication with many antennas transmitting and
receiving goes by the name of MIMO (Multiple Input Multiple Output) systems.
Development of practical signal processing schemes appropriate for MIMO sys-
tems promises very high wireless data transmission rates.(7) Currently wireless
networking devices based MIMO technology are available on the market. For a
recent overview of the developments, see the article by Gesbert et al.(8)

We study communication in the multichannel setting. The channel input-
output relationship is defined as

Yi =
n∑

j=1

Hi j X j + Zi (1)

where all the quantities are in general complex, and i = 1 . . . m, j = 1 . . . n. Zi are
Gaussian distributed with zero mean and a unity covariance matrix, E[Zi Z∗

j ] = δi j .
Note that this fixes the units for measuring signal power. For most of the paper we
employ an overall power constraint

n∑

j=1

E[|X j |2] = n P (2)

except in one case where we are able to employ an amplitude (or peak power)



Capacity of Multivariate Channels with Multiplicative Noise 1229

constraint. The entries of the matrix Hi j are assumed to be chosen from a zero
mean Gaussian distribution with covariance matrix

E[Hik H∗
jl] = 1

n
Ci j Dkl (3)

Here C, D are positive definite Hermitian matrices. Note that although we assume
the distribution of H to be Gaussian, this assumption can be somewhat relaxed
without substantially affecting some of the large n results. This kind of universality
is expected from known results in random matrix theory.(3) However, for simplicity
we do not enter into the related arguments.

We consider the case where C, D are arbitrary positive definite hermitian
matrices, as well as the special case where C, D are identity matrices. In either
case, one needs to consider the scale of H . Since H multiplies X , we absorb the
scale of H into P . The formulae derived in the paper can be converted into more
explicit ones exhibiting the scale of H (say h) and the noise variance σ by the
simple substitution P → Ph2/σ 2.

A note about our choice of convention regarding scaling with n: We chose to
scale the elements of the matrix Hi j to be order 1/

√
n and let each signal element

X j be order 1. In the multi-antenna wireless literature, it is common to do the
scaling the other way round. In these papers,(4,5) X j ’s are scaled as 1/

√
n but

keeping Hi j ’s are kept order 1 so that the average total power is P . Our choice
of convention is motivated by the fact that we want to treat the systems with
channel known at receiver and those with partially unknown channel within the
same framework. For reasons that will become clear later, it is convenient for us
to keep the scaling of the input space and the output space to be the same, i. e.
to keep Yi , X j and Zi all to be order 1 and to scale down Hi j to be order 1/

√
n.

The advantage of this is that the singular values of H happens to be order 1.
For the results in the last section, it is convenient that the fluctuating part of the
matrix scales this way, in order to have a meaningful result . The final answer for
capacity is obviously the same in either convention. While using our results in the
context of multiantenna wireless, we just have to remember that the total power,
in physical units, is P , and not n P .

In this paper, we discuss two classes of problems. The first class consists of
cases where H is known to the receiver but not to the transmitter.H being known to
neither corresponds to problems of the second class. The case where H is known
to both could be solved by a combination of random matrix techniques used in
this paper and the water-filling solution.(4)

As for the first class of problems, we need to maximise the mutual information
I (X, (H, Y )) over the probability distribution of X subject to the power constraint.
Following Telatar’s argument,(4) one can show that it is enough to maximise over
Gaussian distributions of X , with E(X ) = 0. Let E(X∗

i X j ) = P Si j . T r S = n so
that the power constraint is satisfied. S has to be chosen so that E(I (X, Y |H )), i.
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e. mutual information of X, Y for given H , averaged over different realisations of
H , is maximum.

Most of the paper deals with the statistical properties of the quantity

f (H ) = log det(1 + P H†SH ) =
rank(H )∑

i=1

log(1 + Pµi ) (4)

where µi are the squares of the singular values of the matrix S
1
2 H .

The conditions for optimisation over S are as follows: Let

E(H (1 + P H†SH )−1 H†) = � (5)

� is a nonnegative definite matrix. Then

• S and � are simultaneously diagonalizable.
• In the simultaneously diagonalizing basis, let the diagonal elements Sii =

si and �i i = λi . Then for all i , such that si > 0, λi = λ.
• For i such that si = 0, λi < λ.

The derivation of these conditions are provided in Appendix A.

2. CHANNEL KNOWN AT THE RECEIVER: ARBITRARY MATRIX SIZE,

UNCORRELATED ENTRIES

We start with the simplest case, in which the matrix entries are i.i.d. Gaussian,
corresponding to C = I, D = I . In this case, one obtains S = I for the capacity
achieving distribution.(4) In this case, the joint probability density of the singular
values of H is explicitly known to be given by(3)

P(µ1, . . . , µmin(m,n)) = 1

Z
∏

i< j

(µi − µ j )
2
∏

i

µ
|m−n|
i e−n

∑
i µi (6)

where the normalisation constant can be obtained as a consequence of the Selberg
integral formula ((3), Pg. 354, Eq. 17.6.5)

Z =
min(n,m)∏

j=1

�( j)�(|m − n| + j) (7)

In the following, we assume (without loss of generality) min(n, m) = n.
This form has been utilised before to obtain the expectation of f (H ) in terms

of integrals over Laguerre polynomials.(4) However, it is also fairly straightforward
to obtain the full moment generating function (and hence the probability density)
of f (H ), particularly at large P . Consider the moment generating function F(α)
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of the random variable f (H ), given by

F(α) = E[exp(α f (H ))] = E[
∏

i

(1 + Pµi )
α] (8)

2.1. Large P Limit

In the limit of large P , the expectation can be simply computed as an appli-
cation of the integral formula stated above. Note that the large P limit is obtained
when P is much larger than the inverse of the typical smallest eigenvalue. For the
case m = n, this would require that P >> n, whereas if m/n = β > 1, then we
require P >> (

√
β − 1)−1. Taking the large P limit, we obtain

F(α) ≈ (P)αn E

[ ∏

i

µα
i

]

(9)

E[
∏

i

µα
i ] =

n∏

j=1

�(α + |m − n| + j)

�(|m − n| + j)
(10)

In this limit, it follows that the expectation of f (H ) is given by

E[ f (H )] ≈ n log(P) +
n∑

j=1

ψ(m − n + j) − n log(n) (11)

and the variance, by

V ar [ f (H )] ≈
n∑

j=1

ψ ′(|m − n| + j) (12)

where ψ( j) = �′( j)/�( j). Setting m/n = β and for large n, we get

E[ f (H )] ≈ n log(β P/e) (13)

For β > 1 and large n,

V ar [ f (H )] ≈ log

(
m

m − n

)

= log

(
β

β − 1

)

(14)

For β = 1 and large m(= n),

V ar [ f (H )] ≈ log(m) + 1 + γ (15)

where γ is the Euler-Mascheroni constant.
Laplace transforming the moment generating function, one obtains the proba-

bility density of C = f (H ). In the large P limit, the probability density is therefore
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Fig. 1. The probability density function of f (H ) is given for m = n = 4 in the limit of large P . The
origin is shifted to the value 4 log(P/e).

given by p(C − n log(P/e)) where p(x) is given by

p(x) = 1

2π

∫ ∞

−∞
dαe−iαn(log(n)−1)−i xα

n∏

j=1

�(iα + |m − n| + j)

�(|m − n| + j)
(16)

An example of p(x) is presented in Fig. 1 for m = n = 4.

2.2. Arbitrary P

For arbitrary P , F(α) does not simplify as above, but can nevertheless be
written in terms of an n × n determinant as follows:

F(α) = det M(α)

det M(0)
(17)

where the entries of the complex matrix M are given by (i, j = 1 . . . n)

Mi j (α) =
∫ ∞

0
dµ(1 + Pµ)αµi+ j+|m−n|−2e−nµ (18)

To obtain this expression for F(α), one has to simply express the quantity∏
i �= j (µi − µ j ) as a Vandermonde determinant and perform the integrals in the
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resultant sum. The integral can be expressed in terms of a Whittaker function
(related to degenerate Hypergeometric functions), and can be evaluated rapidly,
so that for small values of m, n this provides a reasonable procedure for numerical
evaluation of the probability distribution of f (H ).

3. CHANNEL KNOWN AT THE RECEIVER: LARGE MATRIX SIZE,

CORRELATED ENTRIES

For the more general case of correlations between matrix entries as in Eq.
3, the matrix ensemble is no longer invariant under rotations of H , so that the
eigenvalue distribution used in the earlier section is no longer valid. However, by
using saddle point integration,(9) it is still possible to compute the expectation and
variance of f (H ) in the limit of large matrix sizes. In this section, we simply state
the results for the expectation and variance, and explore the consequences of the
formulae obtained. The saddle point method used to obtain these results was used
in an earlier paper to obtain the singular value density of random matrices(9) and
is described in Appendix B .

The expectation and variance of f (H ) are given in terms of the following
equations:

E[ f (H )] =
m∑

i=1

log(w + ξi r ) +
n∑

j=1

log(w + η j q) − nqr − (m + n) log(w)

(19)

V ar [ f (H )] = −2 log |1 − g(r, q)| (20)

where

w2 = 1

P
(21)

g(r, q) =
⎡

⎣1

n

n∑

j=1

(
η j

w + η j q

)2
⎤

⎦

⎡

⎣1

n

m∑

j=1

(
ξ j

w + ξ j r

)2
⎤

⎦ (22)

In the above equations, ξ, η denote the eigenvalues of the matrices C̃ = S
1
2 C S

1
2 , D

respectively. The numbers r, q are determined by the equations

r = 1

n

n∑

j=1

η j

w + η j q
(23)

q = 1

n

m∑

j=1

ξ j

w + ξ j r
(24)
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These equations are expected to be valid in the limit of large m, n assuming that a
sufficient number of the eigenvalues ξ, η remain nonzero. These equations could
be used to design optimal multi-antenna systems.(10)

4. CALCULATING CAPACITY

In this section we provide the step by step procedure for calculating capac-
ity using the results from the previous sections. One can show that the optimal
covariance matrix S and the matrix C could be diagonalized together (Appendix
C). Let us work in the diagonalizing basis. Define C̃ as before. This is a diagonal
matrix in this basis, with diagonal elements ξi = ci si , where ci , si are the diagonal
elements of C, S respectively. We assume that ci ’s are sorted in decreasing order.
That is, c1 > c2 > · · · > cm . The optimality condition, Equation 5, becomes:

cir

w + ci sir
= λ, for i = 1, . . . , p. (25)

p is the number for nonzero si ’s. One way to see this is as follows: Take the
expression in Eq. 19, replace ξ by ci si and take its derivative with respect to
non-zero si ’s. Note that q, r changes as ξi changes. However, this expression is
evaluated at a point which is stationary with respect to variation in q and r . Hence,
to first order, changes of q, r due to changes in ξ do not have a contribution. We
just change ξ keeping q, r fixed. Since ∂ξi/∂si = ci , we got the expression in Eq.
25.

Eq. 25, along with Eq. 23 and Eq. 24, provide p + 2 equations for p + 3
unknowns, namely r, q and si , i = 1, . . . , p. The additional condition comes from
total power constraint

∑
i si = P . Once we find such a solution, we could check

whether the conditions si > 0 and λi = cir/w < λ is satisfied for all i > p. If any
of them is not satisfied, we need to change p, the number of non-zero eigenvalues
of S. After getting a consistent set of solutions we use Eq. 19 to calculate capacity.

Schematically, the algorithm is as follows:

1. Diagonalize C and arrange eigenvalues in the decreasing order along the
diagonal.

2. Start with p = 1.
3. Solve equations 25,23,24 along with the power constraint.
4. Check whether si > 0 for i = 1, .., p, and, cp+1r/w < λ.
5. If any of the previous conditions are not satisfied, go back to step 3 with

p incremented by 1. Otherwise, proceed to next step.
6. Calculate capacity using Eq. 19.
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5. CHANNEL KNOWN AT THE RECEIVER: LARGE MATRIX SIZE,

UNCORRELATED ENTRIES

The results of the previous section simplify if we assume that the matrix
entries are uncorrelated with unit variance. In this case, the equations become

E[ f (H )] = m log(w + r ) + n log(w + q) − nqr − (m + n) log(w) (26)

V ar [ f (H )] = −2 log

∣
∣
∣
∣1 − 1

(w + q)2

β

(w + r )2

∣
∣
∣
∣ (27)

r = 1

w + q
(28)

q = β

w + r
(29)

First, consider the special case where m = n. In this case, we obtain

E[ f (H )] = n

[

log

(
P

e

)

+ log

(

1 + 1

x

)

+ x

P

]

(30)

V ar [ f (H )] = 2 log

(
(1 + x)2

(2x + 1)

)

(31)

where x2 + x = P (x positive). For large P , the expectation and variance tend to
n log(P/e) and log(P) respectively. Note that the variance grows logarithmically
with power, but does not depend on the number of channels.

For m, n not equal, one obtains expressions which are analogous by solving
the simultaneous equations above for q and r (which lead to quadratic equations
for either q or r by elimination of the other variable):

r (w) = −(w2 + m − n) + �

2w
(32)

q(w) = −(w2 − m + n) + �

2w
(33)

� =
√

(w2 + m + n)2 − 4mn (34)

Substituting these formulae in Eq. 26 and Eq. 27 gives the desired expressions
for the expectation and variance of the capacity f (H ).
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6. H UNKNOWN AT BOTH RECEIVER, TRANSMITTER: LARGE

MATRIX SIZE, UNCORRELATED ENTRIES

The case where H is unknown both to the transmitter and receiver is in general
hard.(6) For example, analytical formulae for the capacity are not available even in
the scalar case. However, in the case that the matrix entries are uncorrelated, the
problem reduces to an effective scalar problem which exhibits simple behaviour
at large m. To proceed, one first obtains the conditional distribution p( �Y | �X ). This
can be done by noting that for fixed �X , �Y is a linear superposition of zero mean
Gaussian variables and is itself Gaussian with zero mean and variance given by

E[Yi Y
∗
j ] =

(

1 + 1

n

∑

k

|Xk |2
)

δi j (35)

Note that only the magnitude of the vector �X enters into the equation, and the
distribution of �Y is isotropic. Effectively, since the transfer matrix is unknown
both at the transmitter and receiver, only magnitude information and no angular
information can be transmitted. Since we are free to choose the input distribution
of x = | �X |/√n, we can henceforth regard x as a positive scalar variable. As for
y = | �Y |/√m (

√
m is just to arrange the right scaling),we still have to keep track of

the phase space factor y2m−1 which comes from transforming to 2m dimensional
polar coordinates. Note that we need 2m dimensions since �Y is a complex vector.
Thus, the problem can be treated as if it were a scalar channel, keeping track only
of the magnitudes y and x , except that the measure for integration over y should
be dµ(y) = �2m y2m−1dy where �2m is from the angular integral. The conditional
probability p(y|x) is given by

p(y|x) =
[

m

π (1 + x2)

]m

exp

(

− my2

2(1 + x2)

)

(36)

The conditional entropy of y given x is easy to compute from the original oberva-
tion that the conditional distribution is Gaussian, and is given by

H (y|x) = m Ex

[
log

(πe

m
(1 + x2)

)]
(37)

The entropy of the output is

H (y) = −Ex

∫

dµ(y)p(y|x) log(Ex ′ p(y|x ′)) (38)

Thus, the mutual information between input and output is given by subtracting the
two expressions above and rearranging terms:

I = −Ex

∫

dµ(y)p(y|x) log

(

Ex ′

[(
1 + x2

1 + x ′2

)m

exp

(

− my2

(1 + x ′2)
+ m

)])

(39)
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The y integral contains the factor

y2m−1 exp

(

− my2

(1 + x2)

)

(40)

which is sharply peaked around y2 = (1 + x2) for m large. Thus, the y integral
can be evaluated using Laplace’s method to obtain (for m large)

I ≈ −Ex log Ex ′

[(
1 + x2

1 + x ′2

)m

exp

(

−m
(1 + x2)

(1 + x ′2)
+ m

)]

(41)

Applying Laplace’s method again to perform the integral inside the logarithm,
assuming that the distribution over x is given by a continuous function p(x), we
finally obtain

I = 1

2
log

(
2m

π

)

+
∫

dxp(x) log

[
x

1 + x2

1

p(x)

]

(42)

The capacity and optimal input distribution is straightforwardly obtained by max-
imising the above. It is easier to treat the case where a peak power constraint is
used, namely x ≤ √

P . In this case, the optimal input distribution is (x ∈ [0,
√

P])

p(x) = 1

log(1 + P)

2x

1 + x2
(43)

and the channel capacity is

C = 1

2
log

( m

2π

)
+ log(log(1 + P)) (44)

Notice that the capacity still grows with m, which is somewhat surprising, but
this growth is only logarithmic. Secondly, the dependence on the peak power is
through a double logarithm.

With an average power constraint
∫

x2dxp(x) = P the optimal input distri-
bution is given by

p(x) = a
2x

1 + x2
e− x2

a(1+P) (45)

where a is a constraint determined by the normalisation condition, which yields
the equation

a =
∫ ∞

0

dy

1 + y
e− y

a(1+P) (46)

The capacity is given by

C = 1

2
log

( m

2π

)
+ log(a) + P

1 + P

1

a
(47)

For large P , a ≈ log(1 + P), thus recovering the double logarithm behaviour.
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7. INFORMATION LOSS DUE TO MULTIPLICATIVE NOISE

We could generalize the calculation in the previous section to a problem
which interpolates smoothly between usual additive noise channel and the case
considered above. This is a problem with same number of transmitters and receivers
(m = n) and is defined by

Yi =
n∑

j=1

(αδi j + βHi j )X j + Zi (48)

β = 0 is the usual channel with additive gaussian noise. α = 0 corresponds the
problem we have just discussed. In the first case, capacity increases logarithmi-
cally with input power, whereas in the second case it has a much slower (double
logarithmic) dependence on input power. Apart from the theoretical interest in
studying the crossover between these two kinds of behavior, this problem has
much practical importance.(11)

The easy thing to calculate is c = limn→∞ C/n. Notice that this quantity is
zero in the limit α → 0, capacity being logarithmic in n in that limit. For simplicity,
we choose the input power constraint

∑
i |Xi |2 ≤ n P . We relegate the details of

the saddle point calculation to Appendix D. The result is

c = log

[

1 + α2 P

1 + β2 P

]

(49)

The result tells us that, in the large N limit, the effect of multiplicative noise is
similar to that if an additive noise whose strength increases with the input power.

It is of particular interest to note that there exists a lower bound to the
channel capacity, which is given by the capacity of a fictitious additive gaussian
channel with the same covariance matrix for ( �X , �Y ) as the channel in question.(11)

Remarkably, this bound coincides with the saddle point answer.

8. DISCUSSIONS

This papers discusses how saddle point methods could be useful in deal-
ing with many multichannel communication scenarios with different degrees of
knowledge of the transfer matrix. Our original manuscript was first uploaded to
arXiv(2) on October 2000. In the intervening years, this has been a fairly active
field of research. A number of papers have appeared on the subject, several of
which cite the arxiv version of the preprint. Rather than refer to all these relevant
papers, it might serve our readers better to provide some idea of different research
directions in which our tools could be used and have been used.

The most important application has been to analyze the role of correlation
transfer matrix in MIMO systems. It turns out that the geometry of the antenna
cluster determines the nature of correlations and hence our insights could be
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used to optimize MIMO antenna design.(10,12) Other applications involve how
knowledge of the channel could be used to optimize the transmitting system.(13)

Another area of research benefitting from this work is the study of fluctuating,
partially unknown, channel. As we showed, one could use our methods to model
the crossover between the fixed random channel to the completely unspecified
channel (with only some power constraints). This model has been used as an
approximation to understand the limits of data transfer rates in nonlinear optical
fibers.(11,14) The channels in this case correspond to the different frequencies and
the nontrivial channel mixing is due to non-linear interactions.

Finally, one possible set of applications of this method could be to nonstation-
ary MIMO channels that are correlated in time. Some preliminary results in this
direction come from studies in which the channel keeps changing to something
totally uncorrelated after a fixed interval of time (6, 15). See also the work of Abdi
and Kaveh(16) on more realistic models of space-time correlation in mobile fading
channels. A systematic study of this problem would teach us about the crossover
between long correlation time and extremely short correlation times: another way
to go from frozen channels to unknown ones.

APPENDIX A

The condition of optimality with respect to S is

E[T r{(1 + P H†SH )−1 H†δSH}] = T r (�δS) ≤ 0 (50)

for all allowed small δS. δS has to satisfy two conditions: that S + δS is non-
negative definite and that T r (δS) = 0. The matrix � has been defined in the first
section. It is a non-negative definite hermitian matrix.

If S has only positive eigenvalues then adding a small enough hermitian δS
to it does not make any of the eigenvalues zero or negative. Then only way the
optimisation condition can be satisfied is by choosing � to be proportional to the
Identity matrix. This can be seen as follows: for � = λI, T r�δS = λT rδS = 0.
If � �= λI , then, in general, T r�δS �= 0 even though δS = 0, and can therefore
be chosen to be positive.

What if S has few zero eigenvalues? Let us choose a basis so that S is
diagonal. The eigenvalue of S si are ordered so that s1, . . . , sk are positive and
si = 0 for i > k. We could choose δSi j to be non zero only for 1 ≤ i, j ≤ k and
repeating the argument of the last paragraph, �i j = λδi j , for 1 ≤ i, j ≤ k. In fact,
even if we choose δSi j to be nonzero for i ≤ k < j , and j ≤ k < i we do not
violate, to first order in δS, non negativity of eigenvalues of S + δS. This would
give us �i j = 0 for i ≤ k < j and j ≤ k < i . Hence � is of block-diagonal form.
The k × k block is already constrained to be proportional to Identity matrix. We
would now constrain the other block of � which is of size (n − k) × (n − k).
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Since the last n − k eigenvectors of S correspond to zero eigenvalues, we
are free to rotate them among each other. Using this freedom, we diagonalise the
lower (n − k) × (n − k) block of �. Choosing diagonal δSi j with with negative
values for i = j ≤ k but positive values i = j > k, and satisfying T r (δS) = 0,
we can show that the last n − k eigenvalues of � are smaller than or equal to λ.

APPENDIX B

In this section, it is assumed without loss of generality that m ≥ n. We
consider first the case S = I , but derive the results for arbitrary C, D. It is easy
to recover the results for general S by making the transformation H → S

1
2 H and

C → S
1
2 C S

1
2 .

We start from the identity

det([w i H ; − i H† w])−α =
∫

dµ(X )dµ(Y )

× exp

(

−1

2

α∑

a=1

[w(Y †
a Ya + X†

a Xa)

+ i(Y †
a H Xa − X†

a H†Ya)]
)

(51)

where

dµ(X ) =
n∏

i=1

α∏

a=1

d X R
iad X I

ia

2π
(52)

with R, I denoting real and imaginary parts respectively. dµ(Y ) is defined analo-
gously. The introduction of multiple copies of the Gaussian integration is the well
known ‘replica trick’.(9) This allows us to compute f (H ), since it is easily verified
that

det([w i H ; − i H† w])−α = w−(m+n)αe−α f (H ) (53)

where we have set w2 = n/P . The moment generating function of f (H ) can be
obtained by studying the expectation of the determinant above with respect to
the probability distribution of H . We therefore obtain for the moment generating
function

F(−α) = w(m+n)α
∫

dµ(X )dµ(Y ) exp

(

−1

2

[

w

α∑

a=1

(Y †
a Ya + X†

a Xa)

+ 1

2n

α∑

a,b=1

(Y †
a CYb X†

b DXa)

])

(54)
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The last term in the exponent can be decoupled by introducing the α × α complex
matrices P, Q with contour integrals over the matrix entries in the complex plane
to obtain

F(−α) = w(m+n)α
∫

dµ(X )dµ(Y )dµ(R)dµ(Q) exp

(

−1

2
S

)

(55)

where

S = w

α∑

a=1

(Y †
a Y + X†

a X ) +
α∑

a,b=1

(Y †
a CYb Rab + Qab X†

a DXb − n Rab Qba) (56)

dµ(R)dµ(Q) =
α∏

a,b=1

d Rabd Qab

2π
(57)

The R, Q integrals, in contrast with the X, Y integrals, are complex integrals
along appropriate contours in the complex plain. For example, if the Qi j integrals
are along the imaginary axis, so that the Q integrals give rise to delta functions
which can then be integrated over R to obtain the above equation. The integrals
over X, Y can now be performed to obtain

F(−α) = w(m+n)α
∫

dµ(R)dµ(Q) exp(− log(det(w + C R))

− log(det(w + DQ)) + nT r (RQ)) (58)

where C R and DQ are understood to be outer products of the matrices. Introducing
the eigenvalues ξ, η of C, D the exponent may be written as

m∑

i=1

log(det(w + ξi R)) +
n∑

j=1

log(det(w + η j Q)) − nT r (RQ) (59)

If m, n become large and the number of non-zero ξi , ηi grow linearly with m, n,
then we can perform the R, Q integrals using saddle point methods. If we assume
that at the saddle point the matrices R, Q do not break the replica symmetry , i.e
R = r I , Q = q I where I is the identity matrix, then the saddle point equations
are ∂C/∂r = ∂C/∂q = 0, where C is defined below, leading to

r = 1

n

n∑

j=1

η j

w + η j q
(60)

q = 1

n

m∑

j=1

ξ j

w + ξ j r
(61)
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Expanding the exponent upto quadratic order around the saddle point and per-
forming the resulting Gaussian integral, we obtain

F(α) = exp

(

αC(r, q) + α2

2
V(r, q)

)

(62)

C(r, q) =
m∑

i=1

log(w + ξi r ) +
n∑

j=1

log(w + η j q) − nqr − (m + n) log(w) (63)

V(r, q) = −2 log |1 − g(r, q)| (64)

g(r, q) =
⎡

⎣1

n

n∑

j=1

(
η j

w + η j q

)2
⎤

⎦

⎡

⎣1

n

m∑

j=1

(
ξ j

w + ξ j r

)2
⎤

⎦ (65)

Since F(α) is the moment generating function for f (H ), the expressions for C, V
give the expressions for the expectation and variance of f (H ), as presented in
Section (3).

Note that these results could be obtained by many other means. We use the
replica symmetric ansatz as a quick way to obtain the equations. An alternative
way of arriving at these equations is by re-summing planar diagrams.(9) The replica
trick here is a just a way of organizing the perturbation theory in power P . As
long as V remains real and positive, one does not run into any inconsistencies.
Most of the papers dealing with more rigorous methods tend to focus on the case
with uncorrelated entries. For a treatment of the case with correlated entry, directly
dealing with the matrix integrals, see the recent paper by Simon and Moustakas.(18)

APPENDIX C

We showed that S and � are simultaneously diagonalizable, and, therefore,
commute with each other. Doing the transformation H̃ = C− 1

2 H and S̃ = C
1
2 SC

1
2 ,

and following the same trend of argument, one shows that S̃ = C
1
2 SC

1
2 and �̃ =

C− 1
2 �C− 1

2 are simultaneously diagonalizable as well. Then

C
1
2 S�C− 1

2 = S̃�̃ = �̃S̃ = C− 1
2 �SC

1
2 (66)

or

C S� = S�C (67)

Now use the basis where S and � are simultaneously diagonalized. Eqn. 67 leads
to Ci j (siλi − s jλ j ) = 0. Remebering the condition for optimality of S and �,
(siλi − s jλ j ) = 0 only if si = s j . So Ci j �= 0 only if si = s j . If there is subspace V ,
with dimension more than 1, spanned by all eigenvectors of S with the eigenvalue
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s, one could choose a new basis in the subspace V to make C diagonal in that
subspace/block, while keeping S diagonal. Continuing this process, one can find
a basis where both S and C are simultaneously diagonal.

APPENDIX D

In this case,

P( �Y | �X ) = 1

[π (1 + β2|X |2)]n
e
− | �Y−α �X |2

(1+β2 |X |2/n) (68)

Let us redefine �x = �X and �y = �Y/
√

n. The optimal probability distribution of �x
depends only on its norm x = |�x |/√n. Let q(x) to be the probability distribution
of x .

Once more,

H (�y|�x) = E �x [n log(πe(1 + β2x2)/n)] = n

∫

dxq(x) log
[πe

n
(1 + β2x2)

]

(69)
However,

p(�y) = E �x [p(�y|�x)] ≈
∫

dxq(x)
nn

[π (1 + β2x2)]n
e
− n(y2+α2 x2)

(1+β2 x2)
+2nφ

(
αxy

1+β2 x2

)

(70)

where

φ(a) = lim
d→∞

1

d
log

[∫ π

0 dθ sind−2(θ )eda cos(θ)

∫ π

0 dθ sind−2(θ )

]

(71)

Saddle point evaluation of φ(a) (which is equivalent to doing an expansion of the
Bessel functions Iν(z) with large order ν and large argument z, but the ratio z/ν
held fixed) gives

φ(a) = a cos θ (a) + log sin θ (a) (72)

cos θ (a) = a sin2 θ (a) (73)

In fact we would need dφ(a)/da.

dφ(a)

da
= cos θ (a) =

√
1 + 4a2 − 1

2a
(74)

Variation of H (�y) = ∫
d �y p(�y) log 1

p(�y) with respect to q(x) produces

δH (�y)

δq(x)
= −

∫

d �y p(�y|x)(1 + log p(�y)) (75)
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where

p(�y|x) =
[

n

π (1 + β2x2)

]n

exp(−n f (x, y)) = p(y|x) (76)

and

f (y, x) = y2 + α2x2

(1 + β2x2)
− 2φ(

αxy

1 + β2x2
) (77)

Now we can do the �y integral in Eq. 75 by the saddle point method. After going
over to polar coordinates and doing some straightforward calculations, we find
that the integral peaks at y = y(x) given by

y(x)2 = (1 + (α2 + β2)x2) (78)

This is expected, as variance of �y given a uniform angular distribution of �x with
a fixed norm x is the right hand side of (78). On the other hand, the variance is
y(x)2 in the saddle point approximation.

Thus finally, we have the condition for the stationarity of the mutual infor-
mation,

−C = log
∫

dx ′q(x ′)p(y(x)|x ′) + n log
[πe

n
(1 + β2x2)

]
(79)

where C is a constant, which turns out to be the channel capacity. The constant
is fixed by the condition that q(x) is a normalised probability distribution. This
condition, along with the fact

∫
d �y p(y|x) = �2n

∫
dyy2n−1 p(y|x) = 1, �2n =

2πn/�(n), can be used to determine C .

1 = �2n

∫

dxy′(x)y(x)2n−1
∫

dx ′q(x ′)p(y(x)|x ′) (80)

= e−C�2n

∫ √
P

0
dx

[
n

πe(1 + β2x2)

]n y′(x)

y(x)
y(x)2n (81)

≈ e−C
√

2n

π

∫ √
P

0
dx

y′(x)

y(x)

[
y(x)2

(1 + β2x2)

]n

(82)

For any α > 0,

f (x) = log

[
y(x)2

(1 + β2x2)

]

= log

[
1 + (α2 + β2)x2

1 + β2x2

]

(83)

is a monotonically increasing function of x , for positive x . Hence the last integral
is dominated by the contribution from the region near the upper limit. For a
monotonically increasing function f (x),

∫ z

0
g(x) exp(n f (x)) ≈ g(z) exp(n f (z))

n f ′(z)
. (84)
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Using this, we get

c = lim
n→∞ C/n = log

[
1 + (α2 + β2)P

1 + β2 P

]

(85)
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